An Enhanced Convolutional Neural Network Model for Answer Selection
نویسندگان
چکیده
Answer selection is an important task in question answering (QA) from the Web. To address the intrinsic difficulty in encoding sentences with semantic meanings, we introduce a general framework, i.e., Lexical Semantic Feature based Skip Convolution Neural Network (LSF-SCNN), with several optimization strategies. The intuitive idea is that the granular representations with more semantic features of sentences are deliberately designed and estimated to capture the similarity between question-answer pairwise sentences. The experimental results demonstrate the effectiveness of the proposed strategies and our model outperforms the state-of-the-art ones by up to 3.5% on the metrics of MAP and MRR.
منابع مشابه
Learning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملA Convolutional Neural Network based on Adaptive Pooling for Classification of Noisy Images
Convolutional neural network is one of the effective methods for classifying images that performs learning using convolutional, pooling and fully-connected layers. All kinds of noise disrupt the operation of this network. Noise images reduce classification accuracy and increase convolutional neural network training time. Noise is an unwanted signal that destroys the original signal. Noise chang...
متن کاملAn Open Domain Topic Prediction Model for Answer Selection
We present an open domain topic prediction model for the answer selection task. Different from previous unsupervised topic modeling methods, we automatically extract high quality and large scale 〈sentence, topic〉 pairs from Wikipedia as labeled data, and train an open domain topic prediction model based on convolutional neural network, which can predict the most possible topics for each given i...
متن کاملSimilarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملA Radon-based Convolutional Neural Network for Medical Image Retrieval
Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017